УТВЕРЖДЕНО

приказом Генерального директора ООО СК «Эверия Лайф» от «30» апреля 2025 г. № 80

Е.А. Щекланов

МЕТОДИКА РАСЧЕТА СТРАХОВЫХ ТАРИФОВ к ОБЩИМ ПРАВИЛАМ ДОБРОВОЛЬНОГО СТРАХОВАНИЯ ЖИЗНИ И ДОПОЛНИТЕЛЬНЫМ УСЛОВИЯМ К НИМ Для определения размера тарифов использовался принцип эквивалентности финансовых обязательств страховщика и страхователя.

Расчет производился в соответствии с Федеральным стандартом актуарной деятельности «Актуарная деятельность по тарификации страхования жизни» от 26.02.2019 № 06-52-4/1342 с учетом:

- аннуитетных таблиц - страховых таблиц смертности, смертности, таблиц вероятностей инвалидности, таблиц вероятностей проведения хирургической операции в результате несчастного случая, таблиц вероятностей проведения хирургической операции в результате болезни, таблиц вероятностей смертельноопасных заболеваний (СОЗ) (отдельно для мужчин и женщин), таблиц вероятностей женских онкологических заболеваний (ЖОЗ), таблиц вероятностей подтверждения диагноза онкологического заболевания, таблиц вероятностей мастэктомии (для женщин). Данные таблицы рекомендованы Мюнхенским перестраховочным обществом (Munich Re) для применения на российском страховом рынке (см. Приложение 1 к настоящему расчету), либо предоставлены перестраховочной компанией Swiss Re. Рекомендации были сделаны на основе комплексного исследования демографической ситуации, проведенного Munich использованием информации, обобщенной за годы работы перестраховочного общества на Российском рынке;
- норм доходности 1.5, 2, 3, 4 и 5 % годовых;
- следующих составляющих нагрузки:
- α начальные расходы на заключение договора страхования (андеррайтинг, оформление, учет полиса) от страховой суммы;
- α_{l} начальные расходы на оплату комиссионного вознаграждения от годового (единовременного) взноса;
- β_1 возобновляемые расходы по администрированию полиса на протяжении всего срока страхования от страховой суммы,
- β_2 дополнительные возобновляемые расходы по администрированию полиса на протяжении периода уплаты взносов от страховой суммы;
- $\beta = \beta_1 + \beta_2$ расходы по администрированию полиса при совпадении периодов страхования и уплаты взносов от страховой суммы;
- γ расходы на инкассацию, перевод и оформление взносов, оплату комиссионного вознаграждения от суммы годового (единовременного)
 взноса:
- f расходы на выплату аннуитетов (ренты) от суммы годовой рентной выплаты.

Составляющие нагрузки определяются в зависимости от порядка уплаты взносов, срока действия договора страхования и канала продаж, через который реализуется полис.

Максимально и минимально возможные составляющие нагрузки при заключении договора страхования определяются в соответствии со следующими таблицами:

Таблица 1. Максимально возможные размеры составляющих нагрузки

Составляющие	Порядок оплаты взносов	
нагрузки	единовременно	в рассрочку
α	3 %	3 %
α_{I}	20 %	150 %
β_{I}	1,5 %	1,5 %
β_2		0,5 %
β	1,5 %	2,0 %
γ	20 %	25 %
f	5 %	

Таблица 2. Минимально возможные размеры составляющих нагрузки

Составляющие	Порядок оплаты взносов	
нагрузки	единовременно	в рассрочку
α	0,035 %	0,002 %
α_{I}	0 %	0 %
$oldsymbol{eta}_{I}$	0,003 %	0,001 %
eta_2		0,0005 %
β	0,003 %	0,0015 %
γ	1 %	1 %
f	3 %	

Для основных программ страхования, а также дополнительных программ страхования от несчастных случаев, страхования пожизненной ренты, страхования на случай инвалидности, страхования на случай проведения хирургической операции в результате болезни тарифы рассчитаны в промилле от страховой суммы (на 1000 единиц страховой суммы). Для дополнительных программ страхования «на срок» (возврат взносов в случае смерти), освобождения от уплаты взносов в случае инвалидности тарифы рассчитаны в процентах от суммы уплачиваемых взносов по основной программе страхования, включенной в полис. Для дополнительной программы страхования пожизненной ренты с наследованием супругой (супругом) тарифы рассчитаны в процентах от суммы уплачиваемых взносов по дополнительной программе страхования пожизненной ренты основного застрахованного. Для дополнительной программы страхования на случай СОЗ тарифы являются составными и рассчитаны как в промилле от страховой суммы, так и в процентах от суммы уплачиваемых взносов по основной программе страхования, включенной в полис. Все тарифы для случая уплаты взносов в рассрочку рассчитаны при условии оплаты один раз в год.

Дополнительно было произведено тестирование прибыли для типового договора страхования по страховым продуктам с оценкой чувствительности мер прибыльности к изменению основных параметров тарифного базиса. Тестирование прибыли показало соответствие критериям страховщика.

В целях расчета использовались следующие обозначения:

- t период уплаты взносов (период накопления),
- n срок страхования (период гарантированной выплаты ренты),
- m периодичность уплаты взносов (выплаты аннуитета), m = 1, 2, 4, 12 в год,

x — для всех программ страхования за исключением дополнительного страхования пожизненной ренты с наследованием супругой (супругом) — возраст застрахованного на момент начала срока действия программы страхования в годах; для дополнительного страхования пожизненной ренты с наследованием супругой (супругом) — возраст основного застрахованного на момент начала срока выплаты ренты в годах.

y – возраст дополнительного застрахованного в годах на момент начала срока выплаты ренты основному застрахованному или возраст застрахованного ребенка на момент начала срока действия программы,

i – годовая ставка процента (норма доходности),

S — страховая сумма.

Параметры таблиц смертности, инвалидности, проведения хирургической операции в результате несчастного случая, проведения хирургической операции в результате болезни, СОЗ, ЖОЗ, подтверждения диагноза онкологического заболевания, мастэктомии:

ω – предельный возраст таблицы;

 q_{x} – для лица в возрасте x лет вероятность смерти до наступления возраста x+1 лет;

 $p_x = 1 - q_x -$ для лица в возрасте х лет вероятность дожить до возраста х+1 лет;

 $_{n}p_{x}$ - для лица в возрасте х лет вероятность дожить до возраста х+n лет;

 $l_x = l_{x-1} \times (1 - q_{x-1})$ – количество лиц, доживших до возраста х лет;

 $l_x^{SA} = l_{x-1}^{SA} \times \left(1 - i_{x-1}\right)$ — количество лиц, не заболевших СОЗ/ЖОЗ/подтверждения диагноза онкологического заболевания/мастэктомии, не проводивших хирургические операции в результате НС/болезни, не имевших инвалидности к возрасту х лет;

 $d_x = l_x \times q_x$ – количество лиц умерших в возрасте х лет;

 i_x – для лица в возрасте х лет вероятность хирургической операции в результате HC/хирургической операции в результате болезни/CO3/ЖO3/подтверждения диагноза онкологического заболевания/мастэктомии до наступления возраста х+1 лет;

 qi_x — для лица в возрасте х лет вероятность смерти или инвалидности/хирургической операции в результате HC/хирургической операции в результате болезни/СОЗ/ЖОЗ/подтверждения диагноза онкологического заболевания/мастэктомии до наступления возраста х+1 лет;

$$qi_x = 1 - (1 - q_x) \cdot (1 - i_x)$$

 $l_x^{acc} = l_{x-1}^{acc} \times (1 - qi_{x-1})$ — количество лиц, доживших до возраста х лет без хирургической операции в результате HC/хирургической операции в результате болезни/CO3/ЖO3/подтверждения диагноза онкологического заболевания/мастэктомии;

 q_x^d — для лица в возрасте x лет вероятность инвалидности I или II группы до наступления возраста x+1 лет;

 $(aq)_x = q_x \times (1 - 0.5 \times q_x^d)$ – для лица в возрасте х лет вероятность смерти до наступления возраста х+1 лет – значение двудекрементной таблицы смерть/инвалидность, смерть/ОУСВ;

 $(aq)_x^d = q_x^d \times (1-0.5 \times q_x)$ — для лица в возрасте х лет вероятность инвалидности I или II группы до наступления возраста х+1 лет — значение двудекрементной таблицы смерть/инвалидность, смерть/ОУСВ;

 $(ap)_x = 1 - (aq)_x - (aq)_x^d$ – для лица в возрасте х лет вероятность оставаться не подвергнутым ни одной причине декремента до возраста х+1 лет – значение двудекрементной таблицы смерть/инвалидность, смерть/ОУСВ;

 $(al)_x = (al)_{x-1} \times (ap)_x$ - количество лиц возраста x-1 лет, доживших до возраста x лет и не ставших инвалидами, ОУСВ.

Коммутационные функции:

$$\begin{split} D_{x} &= l_{x} \times v^{x} \,; & N_{x} &= \sum_{j=0}^{\omega-x} D_{x+j} \,; & S_{x} &= \sum_{j=0}^{\omega-x} N_{x+j} \,; \\ C_{x} &= d_{x} \times v^{x+1} \,; & M_{x} &= \sum_{j=0}^{\omega-x} C_{x+j} \,; & R_{x} &= \sum_{j=0}^{\omega-x} M_{x+j} \,; \\ D_{x}^{acc} &= l_{x}^{acc} \times v^{x} \,; & N_{x}^{acc} &= \sum_{j=0}^{\omega-x} D_{x+j}^{acc} \,; & M_{x}^{acc} &= \sum_{j=0}^{\omega-x} D_{x+j}^{acc} \times q i_{x+j} \times v \,; \\ D_{x}^{SA} &= l_{x}^{SA} \times v^{x} \,; & M_{x}^{aa} &= \sum_{j=0}^{\omega-x} D_{x+j}^{SA} \times i_{x+j} \times v \,; \\ D_{x}^{aa} &= (al)_{x} \times v^{x} \,; & N_{x}^{aa} &= \sum_{j=0}^{\omega-x} D_{x+j}^{aa} \,; \\ C_{yx}^{1} &= d_{y} \times v^{1/2 \times (x+y)+1} \times l_{x+1/2} \,; & M_{yx}^{1} &= \sum_{j=0}^{\omega-x} C_{y+j;x+j}^{1} \,; & R_{yx}^{1} &= \sum_{j=0}^{\omega-x} M_{y+j;x+j}^{1} \,; \\ D_{xy} &= l_{x} \times l_{y} \times v^{1/2 \times (x+y)} \,; & N_{xy} &= \sum_{j=0}^{\omega-x} D_{x+j;y+j} \,. \end{split}$$

Финансовые и актуарные функции:

$$\begin{split} v &= \frac{1}{1+i}; \qquad \mathcal{S} = \ln(1+i); \qquad d = i \times v \\ i^{(m)} &= m \times \left(\left(1+i \right)^{1/m} - 1 \right); \qquad d^{(m)} = m \times \left(1-\left(1-d \right)^{1/m} \right) \\ \alpha(m) &= \frac{i \times d}{i^{(m)} \times d^{(m)}}; \qquad \beta(m) = \frac{i-i^{(m)}}{i^{(m)} \times d^{(m)}} \\ n &= \frac{D_{x+n}}{D_x}; \quad n_{xx} = \frac{l_{y+n} \times l_{x+n} \times v^n}{l_y \times l_x} \\ \overline{A}_{x,\overline{n}|}^1 &= \frac{i}{\mathcal{S}} \times \frac{M_x - M_{x+n}}{D_x}; \quad \overline{A}_{x,\overline{n}|}^1 = \frac{i}{\mathcal{S}} \times \sum_{j=0}^{t-1} \frac{l_{y+j}}{l_y} \times \frac{l_{x+j}}{l_x} \times q_{y+j} \times v^{j+1} \\ \overline{A}_{x,\overline{n}|} &= \overline{A}_{x,\overline{n}|}^1 + n_x = \frac{i}{\mathcal{S}} \times \frac{M_x - M_{x+n}}{D_x} + \frac{D_{x+n}}{D_x} \\ a_{\overline{i}|} &= \frac{1-v^t}{i}; \quad a_{\overline{i}|}^{(m)} = \frac{1-v^t}{i^{(12)}} \\ \ddot{a}_x &= \frac{N_x}{D_x}; \qquad \ddot{a}_{x,\overline{i}|} = \frac{N_x - N_{x+t}}{D_x}; \qquad \ddot{a}_{x,\overline{x}|} = \sum_{j=0}^{t-1} \frac{l_{y+j}}{l_y} \times \frac{l_{x+j}}{l_x} \times v^j; \quad a_{x,\overline{i}|} = \frac{N_{x+1} - N_{x+t+1}}{D_x} \\ \ddot{a}_x^{(m)} &= \alpha(m) \times \ddot{a}_x - \beta(m); \qquad \ddot{a}_{x,\overline{i}|}^{(m)} &= \alpha(m) \times \ddot{a}_{x,\overline{i}|} - \beta(m) \times \left(1-t_x E_x \right) \\ \ddot{a}_{x,\overline{i}|}^{(m)} &= \alpha(m) \times \ddot{a}_{x,\overline{i}|} - \beta(m) \times \left(1-t_x E_x \right) \\ \ddot{a}_{x,\overline{i}|}^{(m)} &= \ddot{a}_x^{(m)} + \ddot{a}_y^{(m)} - \ddot{a}_{x,\overline{i}|}^{(m)} \\ \ddot{a}_{x,\overline{i}|}^{(m)} &= \ddot{a}_x^{(m)} + \ddot{a}_y^{(m)} - \ddot{a}_{x,\overline{i}|}^{(m)} \end{aligned}$$

$$\begin{split} &(I\overline{A})_{x:\overline{l}|}^{1} = \frac{i}{\delta} \times \frac{R_{x} - R_{x+t} - t \times M_{x+t}}{D_{x}}; \quad (I\overline{A})_{yx:\overline{l}|}^{1} = \frac{i}{\delta} \times \frac{R^{1}_{yx} - R^{1}_{y+t:x+t} - t \times M^{1}_{y+t:x+t}}{D_{xy}} \\ &(I^{(m)}\overline{A})_{x:\overline{l}|}^{1} = (I\overline{A})_{x:\overline{l}|}^{1} - \overline{A}_{x:\overline{l}|}^{1} \times \left(\frac{1}{d} - \frac{1}{d^{(m)}}\right); \quad (I^{(m)}\overline{A})_{yx:\overline{l}|}^{1} = (I\overline{A})_{yx:\overline{l}|}^{1} - \overline{A}_{yx:\overline{l}|}^{1} \times \left(\frac{1}{d} - \frac{1}{d^{(m)}}\right) \\ &\overline{A}_{x:\overline{n}|}^{1ACC} = \frac{i}{\delta} \times \frac{M_{x}^{acc} - M_{x+n}^{acc}}{D_{x}^{acc}}; \quad \overline{A}_{x:\overline{n}|}^{1SA} = \frac{i}{\delta} \times \frac{M_{x}^{sa} - M_{x+n}^{sa}}{D_{x}^{SA}} \\ &\ddot{a}_{x:\overline{l}|}^{acc} = \frac{N_{x}^{acc} - N_{x+t}^{acc}}{D_{x}^{acc}}; \quad \ddot{a}_{x:\overline{l}|}^{acc(m)} = \alpha(m) \times \ddot{a}_{x:\overline{l}|}^{acc} - \beta(m) \times \left(1 - {}_{t}E_{x}^{acc}\right); \quad {}_{t}E_{x}^{acc} = \frac{D_{x+t}^{acc}}{D_{x}^{acc}} \\ &\ddot{a}_{x:\overline{l}|}^{aa} = \frac{N_{x}^{aa} - N_{x+t}^{aa}}{D_{x}^{aa}}; \quad \ddot{a}_{x:\overline{l}|}^{aa(m)} = \alpha(m) \times \ddot{a}_{x:\overline{l}|}^{aa} - \beta(m) \times \left(1 - {}_{t}E_{x}^{aa}\right); \quad {}_{t}E_{x}^{aa} = \frac{D_{x+t}^{aa}}{D_{x}^{aa}} \end{split}$$

І. Расчет базовых тарифов по основным программам страхования

1. Расчет базового тарифа при единовременной оплате:

$$GP = S \times \frac{NP + \alpha + \beta_1 \times \ddot{a}_{x:n|}}{1 - \alpha_1 - \gamma}$$
 - для всех основных программ страхования, за исключением

$$GP = S \times \frac{(1+f) \times NP + \alpha + \beta_1 \times \ddot{a}_{x:n|}}{1-\alpha_1 - \gamma}$$
 - для страхования «семейного дохода».

2. Расчет базового тарифа при оплате в рассрочку m раз в год по 1/m от годового значения в течение периода t:

$$GP_{x:ar{t}|}^{(m)} = S imes rac{\ddot{a}_{x:ar{t}|}^{(m)} + \dfrac{lpha}{\ddot{a}_{x:ar{t}|}^{(m)}} + eta_1 imes rac{\ddot{a}_{x:ar{t}|}^{(m)}}{\ddot{a}_{x:ar{t}|}^{(m)}} + eta_2}{1 - rac{lpha_1}{\ddot{a}_{x:ar{t}|}^{(m)}} - \gamma}$$
 — для всех основных программ страхования, за

исключением страхования «семейного дохода» и «возврата взносов в случае смерти ЗР» в продукте «Солнышко»;

$$GP_{\underline{x:t|}}^{(m)} = S \times \frac{\left(1+f\right) \times NP_{\underline{x:t|}}^{(m)} + \frac{\alpha}{\ddot{a}_{\underline{x:t|}}^{(m)}} + \beta_1 \times \frac{\ddot{a}_{\underline{x:t|}}^{(m)}}{\ddot{a}_{\underline{x:t|}}^{(m)}} + \beta_2}{1 - \frac{\alpha_1}{\ddot{a}_{\underline{x:t|}}^{(m)}} - \gamma} \quad -$$
 для страхования «семейного дохода».

$$GP_{_{yx:\bar{t}|}}^{(m)} = S \times \frac{NP_{_{yx:\bar{t}|}}^{(m)} + \frac{\alpha}{\ddot{a}_{_{yx:\bar{t}|}}^{(m)}} + \beta_1 \times \frac{\ddot{a}_{_{yx:\bar{t}|}}^{(m)}}{\ddot{a}_{_{yx:\bar{t}|}}^{(m)}} + \beta_2}{1 - \frac{\alpha_1}{\ddot{a}_{_{yx:\bar{t}|}}^{(m)}} - \gamma} \quad \text{- для страхования «возврата взносов в случае смерти}$$

3Р» в продукте «Солнышко». Для упрощения расчетов может быть применено усреднение по всем допустимым значениям параметров x, y и t. В этом случае базовый тариф для страхования «возврата взносов в случае смерти 3Р» будет рассчитан в долях от базового тарифа по программе «страхование к сроку ОЗ».

$$GP_{\vec{x:t|}}^{PREF(m)} = 0,023*GP_{\vec{x:t|}}^{FT(m)}$$
, где

 $GP_{x\bar{t}|}^{FT(m)}$ — базовый тариф по программе «страхование к сроку ОЗ»

 $GP_{x,t}^{PREF(m)}$ — базовый тариф по программе «возврата взносов в случае смерти 3P» в продукте «Солнышко»

Представленные в пакете документов базовые тарифы по основным программам страхования рассчитаны для значения S=1000, т.е. в промилле от страховой суммы.

Здесь NP и $NP_{xx\bar{t}}^{(m)}$ — значения нетто-ставок для случаев единовременной уплаты и уплаты в рассрочку в течение периода t, которые для различных программ страхования рассчитываются следующим образом:

Основная программа страхования	Единовременный взнос <i>NP</i>	Оплата в рассрочку $NP_{xar{t} }^{(m)}$
Страхование «на срок» на <i>п</i> лет	$\overline{A}^1_{x\overline{n} }$	$rac{\overline{A}_{x:\overline{n} }^1}{\ddot{a}_{x:\overline{t} }^{(m)}}$
Страхование «на дожитие» на n лет	$_{n}E_{x}$	$\frac{{}_{n}E_{x}}{\ddot{a}_{x.t }^{(m)}}$
«Смешанное страхование» на <i>п</i> лет	$\overline{A}_{x:\overline{n} } = \overline{A}_{x:\overline{n} }^1 + {}_n E_x$	$rac{\overline{A}_{x:ar{n} }}{\ddot{a}_{x:ar{t} }^{(m)}}$
Страхование «к сроку» на <i>п</i> лет		$\frac{v^n}{\ddot{a}_{x:\dot{t} }^{(m)}}$
«Пожизненное» страхование	$\overline{A}_{x:\overline{100-x} }$	$\frac{\overline{A}_{x:\overline{100-x }}}{\ddot{a}_{x:\overline{t} }^{(m)}}$
Страхование «семейного дохода» на <i>п</i> лет	$a_{\overline{n} }^{(12)} - a_{x\overline{n} }^{(12)}$	$rac{a_{ar{n} }^{(12)}-a_{x:ar{n} }^{(12)}}{\ddot{a}_{x:ar{t} }^{(m)}}$
Страхование на смерть на <i>n</i> лет с отложенной выплатой		$\frac{v^n - {}_n E_x}{\ddot{a}_{x:\dot{t} }^{(m)}}$

Основная программа страхования	Оплата в рассрочку $N\!P_{\!$
Страхование «возврат взносов в случае смерти ЗР» для совпадения периода	$(I^{(m)}\overline{A})^1_{_{\mathcal{V}\!\!X:}\overline{n} }$
накопления с периодом оплаты взносов в продукте «Солнышко»	$\frac{\overline{\ddot{a}_{yx:n}^{(m)}}}{\ddot{a}_{yx:n}^{(m)}}$

II. Расчет базовых тарифов по дополнительным программам страхования.

Договор страхования наряду с основной программой страхования может предусматривать дополнительную программу. В этом случае страховой тариф в зависимости от дополнительной программы страхования может рассчитываться:

а) в промилле GP_1^* от страховой суммы S по дополнительной программе, тогда размер страхового взноса \overline{GP} по дополнительной программе равен:

$$\overline{GP} = S \times \frac{GP_1^*}{1000}$$

б) в процентах GP_2^* от суммы взносов GP. Для рисков «Освобождение от уплаты взносов в случае инвалидности», «Освобождение от уплаты взносов в случае C3» продукта «Солнышко» GP равняется сумме взносов по всему договору за исключением взносов по рискам освобождения от уплаты взносов (C3 — серьезное заболевание (преинвазивный рак, острое нарушение мозгового кровообращения, ишемическая болезнь сердца, транзиторная ишемическая атака, дыхательная недостаточность (с помещением в OPUT)).

Для риска «Освобождение от уплаты взносов в случае CO3» GP равняется тройной сумме взносов по всему договору за исключением взносов по рискам освобождения от уплаты взносов. Для риска «Страхование «на срок» (возврат взносов в случае смерти)» GP равняется сумме взносов по основной программе за исключением взноса по рассчитываемой дополнительной программе. Для остальных случаев GP равняется сумме взносов по всему договору, за исключением взноса по рассчитываемой дополнительной программе. Тогда размер страхового взноса \overline{GP} по дополнительной программе равен:

$$\overline{GP} = GP \times \frac{GP_2^*}{100\%}$$

в) может быть составным и рассчитываться как от страховой суммы по дополнительной программе, так и в процентах от суммы взносов по основной программе, тогда размер страхового взноса \overline{GP} по дополнительной программе равен:

$$\overline{GP} = S \times \frac{GP_1^*}{1000} + GP \times \frac{GP_2^*}{100\%}$$

Базовый тариф по дополнительным программам рассчитывается следующим образом:

3. Для случая единовременного взноса:

Дополнительная программа страхования	GP_1^*	\textit{GP}_2^*
Страхование «на срок» (возврат взносов в случае смерти)		$\frac{NP_{2}^{*}}{1 - \alpha_{1} - \gamma - NP_{2}^{*}} \times 100\%$
Страхование от несчастных случаев (кроме риска Хирургические операции Застрахованного в результате НС), Госпитализация Застрахованного в результате болезни, Реанимация Застрахованного, Инвалидность в результате инфекционного заболевания	$1000 \times \frac{NP_1^* + \alpha + \beta_1 \times \ddot{a}_{x:n }}{1 - \alpha_1 - \gamma}$	
Хирургические операции Застрахованного в результате НС, Хирургические операции в результате болезни,	$1000 \times \frac{NP_1^*}{1 - \gamma - \alpha_1}$	

Дополнительная программа страхования	$\mathit{GP}_{\scriptscriptstyle 1}^*$	GP_2^*
Страхование на случай СОЗ, Страхование на случай женских онкологических заболеваний, Страхование на случай инвалидности	$1000 \times \frac{NP_1^*}{1 - \gamma - \alpha_1}$	
Страхование пожизненной ренты, в т.ч. с периодом гарантированной выплаты	$1000 \times \frac{(1+f) \times NP_1^* + \alpha + \beta_1 \times \ddot{a}_x}{1-\alpha_1}$	
Страхование пожизненной ренты с наследованием супругой (супругом) ***		$C \times NP_2^* \times 100\%$

*** – по страхованию пожизненной ренты с наследованием супругой (супругом) тариф рассчитывается в процентах (%) от суммы взноса по соответствующей программе страхования аннуитета (ренты) основного застрахованного. Базовый тариф по страхованию пожизненной ренты с наследованием супругой (супругом) рассчитывается как:

$$GP = GP_1^* \times \left(1 + \frac{GP_2^*}{100\%}\right)$$
, где GP_1^* - базовый тариф по страхованию пожизненной ренты

основного застрахованного;

C- доля наследуемой супругой (супругом) ренты от страховой суммы основного застрахованного.

Здесь NP_1^* и NP_2^* — значения нетто-ставок для случаев единовременной уплаты взносов в промилле от страховой суммы по доп. программе или в процентах от суммы взносов по основной программе либо от суммы взносов по всему договору, за исключением взноса по рассчитываемой дополнительной программе, соответственно, которые для различных программ страхования рассчитываются следующим образом:

Дополнительная программа страхования	NP_1^*	NP_2^*
Страхование «на срок» (возврат взносов в случае смерти)		$\overline{A}^1_{x:\overline{n} }$
Страхование от несчастных случаев (кроме риска Хирургические операции Застрахованного в результате НС), Госпитализация Застрахованного в результате болезни, Реанимация Застрахованного, Инвалидность в результате инфекционного заболевания	$P_k \times \ddot{a}_{x:n }$	
Хирургические операции Застрахованного в результате НС, Хирургические операции в результате болезни, Страхование на случай СОЗ: с дополнительной выплатой, Страхование на случай женских онкологических заболеваний, Страхование на случай инвалидности	$\overline{A}_{x:\overline{n} }^{1SA}$	

Дополнительная программа страхования	NP ₁ *	NP_2^*
Страхование на случай CO3: с ускоренной выплатой	$\overline{A}_{x:\overline{n} }^{1ACC}-\overline{A}_{x:\overline{n} }^{1}$	
Страхование пожизненной ренты	$v^t \times \ddot{a}_{x+t}^{(m)}$	
Страхование пожизненной ренты с периодом гарантированной выплаты	$v^{t} \times \left(\ddot{a}_{n }^{(m)} + \ddot{a}_{x+t+n}^{(m)} \times_{n} E_{x+t}\right)$	
Страхование пожизненной ренты с наследованием супругой (супругом)		$\frac{{}_{n}E_{y}\times\left(\ddot{a}_{y+n}^{(m)}-{}_{n}p_{x}\times\ddot{a}_{x+n:y+n}^{(m)}\right)}{\ddot{a}_{n}^{(m)}+\ddot{a}_{x+n}^{(m)}_{n}E_{x}}$

где P_k – годовая нетто-ставка по страхованию от несчастных случаев для k-того риска.

4. Для случая уплаты взносов в рассрочку:

Дополнительная программа страхования	GP_1^*	GP_2^*
Страхование «на срок» (возврат взносов в случае смерти)		$\frac{NP_2^*}{1 - \frac{\alpha_1}{\ddot{a}_{x.\bar{t} }^{(m)}} - \gamma - NP_2^*} \times 100\%$
Страхование от несчастных случаев (кроме риска Хирургические операции Застрахованного в результате НС), Госпитализация Застрахованного в результате болезни, Реанимация Застрахованного, Временная нетрудоспособность Застрахованного по уходу за ребёнком, Инвалидность в результате инфекционного заболевания	$1000 \times \frac{NP_{1}^{*} + \frac{\alpha}{\ddot{a}_{x:\bar{t} }^{(m)}} + \beta_{1} \times \frac{\ddot{a}_{x:\bar{t} }^{(m)}}{\ddot{a}_{x:\bar{t} }^{(m)}} + \beta_{2}}{1 - \frac{\alpha_{1}}{\ddot{a}_{x:\bar{t} }^{(m)}} - \gamma}$	
Хирургические операции Застрахованного в результате НС (кроме риска Застрахованного ребёнка в продукте «Солнышко»), Хирургические операции в результате болезни (кроме риска Застрахованного ребёнка в продукте «Солнышко»), Страхование на случай СОЗ, Страхование на случай женских онкологических заболеваний, Страхование на случай	$1000 \times \frac{NP_1^*}{1 - \frac{\alpha_1}{\ddot{a}_{x:\bar{t} }^{acc(m)}} - \gamma}$	$NP_{2}^{*} \times \frac{1-\gamma}{1-\frac{\alpha_{1}}{\ddot{a}_{x\bar{t} }^{acc(m)}}-\gamma} \times 100\%$

Дополнительная программа страхования	GP_1^*	GP_2^*
инвалидности		
Хирургические операции Застрахованного ребёнка в результате НС для продукта «Солнышко», Хирургические операции в результате болезни Застрахованного ребёнка для продукта «Солнышко»	$1000 \times \frac{NP_1^*}{1 - \frac{\alpha_1}{\ddot{a}_{yx:\bar{t} }^{(m)}} - \gamma}$	
Освобождение от уплаты взносов в случае инвалидности		$NP_{2}^{*} \times \frac{1-\gamma}{1-\frac{\alpha_{1}}{\ddot{a}\frac{aa(m)}{x.\dot{t} }}-\gamma} \times 100\%$
Освобождение от уплаты взносов в случае CO3		$NP_{2}^{*} \times \frac{1-\gamma}{1-\frac{\alpha_{1}}{\ddot{a}_{x\bar{t} }^{acc(m)}}-\gamma} \times 100\%$
Освобождение от уплаты взносов в случае C3		$NP_{2}^{*} \times \frac{1-\gamma}{1-\frac{\alpha_{1}}{\ddot{a}_{x.\bar{t} }^{(m)}}-\gamma} \times 100\%$

Здесь NP_1^* и NP_2^* — значения нетто-ставок для случаев периодической уплаты взносов в промилле от страховой суммы по доп. программе или в процентах от суммы взносов соответственно. Для рисков «Освобождение от уплаты взносов в случае инвалидности», «Освобождение от уплаты взносов в случае СЗ» продукта Солнышко NP_2^* указывается в процентах от суммы взносов по всему договору за исключением взносов по рискам освобождения от уплаты взносов. Для риска «Освобождение от уплаты взносов в случае СОЗ» NP_2^* указывается в процентах от тройной суммы взносов по всему договору за исключением взносов по рискам освобождения от уплаты взносов. Для риска «Страхование «на срок» (возврат взносов в случае смерти)» NP_2^* указывается в процентах от суммы взносов по основной программе за исключением взноса по рассчитываемой дополнительной программе. Для остальных случаев NP_2^* указывается в процентах от суммы взносов по всему договору, за исключением взноса по рассчитываемой дополнительной программе. NP_1^* и NP_2^* рассчитываются следующим образом:

Дополнительная программа страхования	NP ₁ *	$N\!P_2^*$
Страхование «на срок» (возврат взносов в случае смерти)		$\frac{(I^{(m)}\overline{A})_{x:\overline{t} }^{1} + t \times_{t} E_{x} \times \overline{A}_{x+t:\overline{n-t} }^{1}}{\ddot{a}_{x:\overline{t} }^{(m)}}$
Страхование от несчастных случаев (кроме риска Хирургические операции Застрахованного в результате НС), Госпитализация Застрахованного в	$P_k imes rac{\ddot{a}_{x:n }^-}{\ddot{a}_{x:t }^{(m)}}$	

Дополнительная программа	NP_1^*	NP_2^*
страхования	- 1- 1	2 12 2
результате болезни,		
Реанимация Застрахованного,		
Временная нетрудоспособность		
Застрахованного по уходу за		
ребёнком,		
Инвалидность в результате		
инфекционного заболевания		
Хирургические операции		
Застрахованного в результате НС		
(кроме риска Застрахованного		
ребёнка в продукте «Солнышко»),		
Хирургические операции в		
результате болезни (кроме риска	_	
Застрахованного ребёнка в	$\overline{A}_{x:\overline{n} }^{1SA}$	$\ddot{a}_{\frac{v-t}{v-t}}^{(m)}$
продукте «Солнышко»),	$\frac{\overrightarrow{acc}(m)}{\overrightarrow{a}^{acc}(m)}$	$\frac{ \vec{a} ^{acc(m)}}{\ddot{a}^{acc(m)}} - 1$
продукте «солпышко»), Страхование на случай СОЗ: с	$a_{x:t }$	$a_{x:t }$
дополнительной выплатой,		
Страхование на случай женских		
онкологических заболеваний,		
Страхование на случай		
инвалидности		
Хирургические операции		
Застрахованного ребёнка в		
результате НС для продукта	$\overline{A}_{x:\overline{n} }^{1SA}$	
«Солнышко»,	7 1 _{X:\bar{n}}	
Хирургические операции в	$\ddot{a}^{(m)}_{{yx:t }}$	
результате болезни	yx:t	
Застрахованного ребёнка для		
продукта «Солнышко»		
Страхование на случай СОЗ: с	$\frac{1}{4}1ACC$ $\frac{1}{4}1$	$\ddot{a}^{(m)}_{-1}$
ускоренной выплатой,	$\overline{A}_{x:\overline{n} }^{1ACC}-\overline{A}_{x:\overline{n} }^{1}$	$\frac{a_{x:t }}{a_{x:t }} - 1$
Первичное диагностирование	$\ddot{a}^{acc(m)}$	$\frac{\overline{\ddot{a}^{acc(m)}}-1}{\ddot{a}^{acc(m)}}$
ЖОЗ: с ускоренной выплатой	x:t	x:t
Освобождение от уплаты взносов в		$\ddot{a}_{\scriptscriptstyle mil}^{(m)}$
<u> </u>		$\frac{\ddot{a}\frac{xxt}{aa(m)}}{\ddot{a}\frac{aa(m)}{aa}}-1$
случае инвалидности		X.I.
Освобождение от уплаты взносов в		$\overline{A}_{x:\overline{n} }^{1SA}$
· ·		
случае СОЗ		$\ddot{a}_{xt }^{acc(m)}$
Освобождение от уплаты взносов в		\ddot{a}_{rn}
случае СЗ		$P_k \times \frac{x:n }{z_k(m)}$
Chyrae C3		$a_{x:t }^{\langle m \rangle}$
		' '

где P_k – годовая нетто-ставка по страхованию от несчастных случаев для k-того риска.

Тариф по рискам «первичное диагностирование женского онкологического заболевания», «первичное диагностирование ЖОЗ in situ», «мастэктомия в связи с ЖОЗ in situ», «гистерэктомия в связи с ЖОЗ in situ» программы страхования на случай женских онкологических заболеваний рассчитывается совместно на основе таблицы женских онкологических заболеваний. В качестве страховой суммы для расчета берется страховая сумма по риску «первичное диагностирование женского онкологического заболевания».

Тариф по рискам «мастэктомия», «гистерэктомия» программы страхования на случай женских онкологических заболеваний рассчитывается совместно на основе таблицы мастэктомии. В качестве страховой суммы для расчета берется страховая сумма по риску «мастэктомия».

III. Годовые нетто-ставки по дополнительным программам страхования

5. Годовые нетто-ставки по дополнительным программам страхования:

Риск	Нетто-ставка (в промилле)
Смерть от несчастного случая	0,98
Инвалидность I группы в результате несчастного случая	0,1
Инвалидность II группы в результате несчастного случая	0,3
Инвалидность III группы в результате несчастного случая	0,27
Инвалидность І группы в результате несчастного случая (по	
договорам продукта Солнышко, заключенным с 01.04.2022)	0,15
Инвалидность II группы в результате несчастного случая (по	0.45
договорам продукта Солнышко, заключенным с 01.04.2022)	0,45
Инвалидность III группы в результате несчастного случая (по	0,41
договорам продукта Солнышко, заключенным с 01.04.2022)	
Телесные повреждения в результате несчастного случая	1,44
Телесные повреждения в результате несчастного случая (по	3,16
договорам продукта Солнышко, заключенным с 01.04.2022)	2,23
Телесные повреждения в результате несчастного случая (для	3,79
продуктов Премиум, Премиум+ и Гардиа)	1.0
Серьезные телесные повреждения в результате несчастного случая	1,9
Временная нетрудоспособность в результате несчастного случая	2,19
Временная нетрудоспособность в результате несчастного случая (по	3,95
договорам продукта Солнышко, заключенным с 01.04.2022)	201.07
Госпитализация в результате несчастного случая	201,07
Госпитализация в результате несчастного случая (по договорам	301,61
продукта Солнышко, заключенным до 01.04.2022) Госпитализация в результате несчастного случая (по договорам	
продукта Солнышко, заключенным с 01.04.2022)	452,41
Смерть на общественном транспорте	0,29
Инвалидность I группы на общественном транспорте	0,03
Инвалидность II группы на общественном транспорте	0,09
Инвалидность III группы на общественном транспорте	0,08
Смерть во время стихийного бедствия	0,1
Инвалидность I группы во время стихийного бедствия	0,01
Инвалидность II группы во время стихийного бедствия	0,03
Инвалидность III группы во время стихийного бедствия	0,03
Тяжкие телесные повреждения Застрахованного ребёнка в результате несчастного случая	0,72
Телесные повреждения Застрахованного ребёнка в результате	2,37
несчастного случая	2,37
Телесные повреждения Застрахованного ребёнка в результате	
несчастного случая (для продукта Звездочка и по договорам	5,21
продукта Солнышко, заключенным с 01.04.2022)	
Госпитализация Застрахованного ребёнка в результате несчастного	542,90
случая	

Госпитализация Застрахованного ребёнка в результате несчастного случая (для продукта Звездочка и по договорам продукта Солнышко, заключенным с 01.04.2022)	1357,24
Инвалидность ребенка	1,22
Инвалидность в результате инфекционного заболевания	0,85
Реанимация	500,00
Госпитализация в результате болезни	2247,70
Временная нетрудоспособность по уходу за ребенком	0,94

Риск	Нетто-ставка (в процентах)
Освобождение от уплаты взносов в случае СЗ	0,893

В случае, если по какой-либо группе инвалидности размер страхового обеспечения, установленный договором страхования, составляет менее 100% страховой суммы, базовый тариф должен быть скорректирован путем умножения расчетного базового тарифа на обусловленный договором процент выплаты от страховой суммы по соответствующей группе инвалидности.

Нетто-ставка по риску «Временная нетрудоспособность в результате несчастного случая» указана при условии, что за каждый день нетрудоспособности выплачивается 0,2% от страховой суммы, начиная с первого дня $P^1_{40,2}$. Среднее количество дней нетрудоспособности – 23,22 дня. Если выплаты производятся, начиная с k-го дня нетрудоспособности (считаем, что k не может превышать 23,22 дня), в размере z% от страховой суммы за каждый день

 $P_4 = P_{40,2}^{\ 1} imes rac{z}{0,2} imes rac{23,22-k}{23,22}$ нетрудоспособности, то нетто-ставка вычисляется по формуле:

Нетто-ставка по риску «Госпитализация в результате несчастного случая» указана исходя из среднего количество дней нахождения в стационаре — 18 дней - P_5^1 . Если выплаты производятся, начиная с k-го дня нахождения в стационаре (считаем, что k не может превышать 18 дней), то тариф вычисляется по формуле: $P_5 = P_5^1 \times \frac{18-k}{18}$.

Нетто-ставка по риску «реанимация» указана исходя из среднего количество дней нахождения в стационаре -5 дней $-P_6^1$. Если выплаты производятся, начиная с k-го дня нахождения в стационаре (считаем, что k не может превышать 5 дней), то тариф вычисляется по формуле: $P_6 = P_6^1 \times \frac{5-k}{5}$.

Нетто-ставка по риску «госпитализация по болезни» указана исходя из среднего количество дней нахождения в стационаре -14 дней $-P_7^1$. Если выплаты производятся, начиная с k-го дня нахождения в стационаре (считаем, что k не может превышать 14 дней), то тариф вычисляется по формуле: $P_7 = P_7^1 \times \frac{14-k}{14}$.

IV. Расчет базовых тарифов в случае оплаты в рассрочку. Расчет величины нагрузки и ее составляющих в целях определения структуры тарифа

6. Расчет базовых тарифов в случае оплаты в рассрочку

Базовые тарифы для оплаты в рассрочку, представленные в качестве приложения к правилам страхования, рассчитаны для случая ежегодной оплаты взносов: при m = 1. Если

договором страхования предусмотрена оплата взносов чаще, чем один раз в год, то размер базового тарифа:

- по основным программам страхования, а также
- по дополнительным программам, взносы по которым определяются с использованием составляющей \emph{GP}_1^*

рассчитывается с учетом коэффициента к увеличения ежегодных взносов:

$$\frac{GP_{x:\bar{t}|}^{(m)}}{m} = GP_{x:\bar{t}|} \times \frac{k}{m}$$

Исходя из практических соображений, коэффициенты увеличения ежегодных взносов определялись с учетом оценки увеличения расходов, связанных с инкассацией, оформлением и размещением взносов, уплачиваемых чаще одного раза в год, но не ниже соотношения аннуитетов $\ddot{a}_{x:\bar{t}}/\ddot{a}_{x:\bar{t}}^{(m)}$.

Достаточные для всего набора возрастов, периодов оплаты взносов, процентных ставок значения коэффициентов k увеличения ежегодных взносов приведенные в таблице.

	Количество периодических взносов, в год						
m	2	4	12				
k	1,03261	1,05435	1,08696				

7. Расчет величины нагрузки и ее составляющих в целях определения структуры тарифа

В связи с тем, что составляющие нагрузки для программ индивидуального страхования задаются в явном виде в зависимости от размера взноса, страховой суммы, порядка уплаты взносов, то структура тарифной ставки будет нерегулярной во времени и, также, будет зависеть от конкретной программы страхования.

В целях определения структуры тарифной ставки по программам страхования и согласования ее с департаментом страхового надзора Минфина $P\Phi$, величина нагрузки и максимальный размер комиссионного вознаграждения усредняются по времени путем дисконтирования к начальному моменту времени и определяются следующим образом.

Величина нагрузки равна:

$$\frac{PV_0\Big(\!GP_{x.\bar{t}|}^{(m)}\Big)\!\!-PV_0\Big(\!N\!P_{x.\bar{t}|}^{(m)}\Big)}{PV_0\Big(\!G\!P_{x.\bar{t}|}^{(m)}\Big)} = \frac{GP_{x.\bar{t}|}^{(m)} - N\!P_{x.\bar{t}|}^{(m)}}{G\!P_{x.\bar{t}|}^{(m)}} \,\,$$
 - для уплаты в рассрочку,

$$\frac{PV_0\big(GP\big)-PV_0\big(NP\big)}{PV_0\big(GP\big)} = \frac{GP-NP}{GP} \ \text{- для единовременной уплаты взносов};$$

в т.ч. доля комиссионного вознаграждения равна:

$$\frac{PV_0\big(Commission\big)}{PV_0\big(GP\big)} = \frac{\frac{GP_{x\bar{x}\bar{l}}^{(m)}}{m} \sum_{j=0}^{t-1} \sum_{k=0}^{m-1} C_{j+1} \times_{j+k/m} p_x \times v^{j+k/m}}{GP_{x\bar{x}\bar{l}}^{(m)} \times \ddot{a}_{x\bar{x}\bar{l}}^{(m)}} = \frac{\frac{1}{m} \sum_{j=0}^{t-1} \sum_{k=0}^{m-1} C_{j+1} \times_{j+k/m} p_x \times v^{j+k/m}}{\ddot{a}_{x\bar{x}\bar{l}}^{(m)}} \quad - \quad \text{для}$$
 уплаты в рассрочку,

где C_j – ставка комиссионного вознаграждения от взносов, уплачиваемых в течение j-того года действия полиса;

$$\frac{PV_0(Comm)}{PV_0(GP)} = \frac{C \times GP}{GP} = C$$
 - для единовременной уплаты взносов,

где C – ставка комиссионного вознаграждения от единовременного взноса.

В качестве представляемой в департамент страхового надзора Минфина РФ указываются нагрузка и доля комиссионного вознаграждения в ее составе, по группам договоров в зависимости от сроков и порядка уплаты взносов и имеющие максимальное значение для всех возрастов в каждой группе.

V. Расчет базовых тарифов по договорам страхования, не предусматривающим в качестве страхового случая дожитие застрахованного. Учет степени риска

8. Расчет базовых тарифов по договорам страхования, не предусматривающим в качестве страхового случая дожитие застрахованного

По договорам страхования (в т.ч. договорам коллективного страхования), не предусматривающим в качестве страхового случая дожитие застрахованного до определенного договором срока (события, возраста), и по условиям которых страховые взносы уплачиваются не реже одного раза в год, а страховые тарифы ежегодно пересматриваются исходя из фактической степени страхового риска, базовые тарифы рассчитываются следующим образом:

$$GP = S \times \frac{NP}{1 - \gamma}$$

где $\gamma = 0.25$ - простая нагрузка.

В зависимости от программы страхования нетто-ставка NP рассчитывается следующим образом:

Программа страхования	Нетто-ставка <i>NP</i>
Страхование на случай смерти «на срок» на 1 год	$\overline{A}_{x.\overline{1} }^{1} = \frac{d}{\mathcal{S}} \times q_{x} \approx q_{x}$
Дополнительное страхование от несчастных случаев на 1 год	P_k
Дополнительное страхование на случай CO3: с дополнительной выплатой на 1 год	$\overline{A}_{x:\overline{1}}^{1SA} = \frac{d}{\delta} \times i_x \approx i_x$
Дополнительное страхование на случай CO3: с ускоренной выплатой на 1 год	$\overline{A}_{x:\overline{1} }^{1ACC} - \overline{A}_{x:\overline{1} }^{1} = \frac{d}{\delta} \times (qi_x - q_x) \approx qi_x - q_x$

где P_k – годовая нетто-ставка по страхованию от несчастных случаев для k-того риска, рассчитанная в соответствии со ст. III настоящего расчета.

Представленные в пакете документов годовые базовые тарифы по программам коллективного страхования рассчитаны для значения S=1000, т.е. в промилле от страховой суммы.

Рассчитанные тарифы могут применяться как индивидуально в отношении каждого застрахованного члена коллектива, так и к выделенным в составе коллектива группам сотрудников, объединенных в рамках укрупненных возрастных диапазонов (например, 5-ти или 10-ти летних).

9. Учет степени риска

К базовым тарифам по индивидуальному и коллективному страхованию:

- на случай смерти по любой причине,
- от несчастных случаев,
- на случай смертельно-опасных заболеваний,
- на случай инвалидности,
- на случай женских онкологических заболеваний,
- на случай подтверждения диагноза онкологического заболевания,
- по мастэктомии,
- на случай проведения хирургической операции в результате болезни,
- на случай госпитализации в результате болезни,
- на случай реанимации,

а также в части тарифов по программе освобождения от уплаты взносов в случае инвалидности, программе освобождения от уплаты взносов в случае СОЗ, программе освобождения от уплаты взносов в случае СЗ Страховщик вправе применять повышающие (от 1,1 - до 10,0) или понижающие (от 0,25 до 0,9) коэффициенты, исходя из различных обстоятельств, имеющих существенное значение для определения степени страхового риска:

- профессиональной деятельности,
- рода деятельности,
- состояния здоровья,
- результатов медицинского освидетельствования,
- свободного времяпрепровождения,
- хобби и увлечения,
- вредных привычек,
- постоянным либо краткосрочным местом пребывания,
- наличия (отсутствия) элементов селекции (антиселекции) при принятии на страхование.

Страховая таблица смертности

Для мужчин Для женщин x l_x d_{x} l_x d_{x} х q_x p_x q_x p_x 100000 108 0,001080 0.998920 100000 96 0,000960 0.999040 0 0 1 99892 108 0,001080 0,998920 1 99904 96 0,000960 0,999040 2 99784 108 0,001080 0,998920 2 99808 96 0,000960 0,999040 3 99676 0,998920 3 99712 96 0,999040 108 0,001080 0,000960 4 99569 108 0.001080 0.998920 4 99617 96 0.000960 0.999040 5 99461 107 0,001080 0,998920 5 99521 96 0,000960 0,999040 99354 99425 95 6 107 0,001080 0,998920 6 0,000960 0,999040 99246 99330 7 107 0,001080 0,998920 7 95 0,000960 0,999040 8 99139 107 0,998920 8 99234 95 0,000960 0,999040 0,001080 9 99032 107 0,998920 9 99139 95 0,000960 0,999040 0,001080 10 98925 107 0,998920 10 99044 95 0,999040 0,001080 0,000960 95 98818 107 0.998920 98949 11 0,001080 11 0.000960 0.999040 12 98712 107 0,001080 0,998920 12 98854 95 0,000960 0.999040 13 95 98605 0,998920 98759 0,999040 106 0,001080 13 0,000960 14 98498 106 0,001080 0,998920 14 98664 95 0,000960 0,999040 15 98392 108 0,001102 0,998898 15 98569 97 0,000979 0,999021 98 16 98284 135 0,001372 0,998628 16 98473 0,000999 0,999001 17 98149 170 0,001728 0,998272 17 98375 100 0,001018 0,998982 18 97979 98274 197 0,002009 0,997991 18 102 0,001037 0,998963 19 97782 198 0.002020 0.997980 19 98173 104 0.001056 0.998944 20 97585 198 0,002031 0,997969 98069 105 20 0,001075 0,998925 21 97387 199 97963 107 0,002041 0,997959 21 0,001095 0,998905 22 97188 199 0,002052 0,997948 22 97856 109 0,001114 0,998886 23 96988 200 0,002063 0,997937 23 97747 111 0,998867 0,001133 24 96788 201 0,002074 0,997926 24 97636 112 0,001152 0,998848 25 201 97524 96588 0,002085 0,997915 25 114 0,001171 0,998829 97410 26 96386 202 0,002095 0,997905 26 116 0,001191 0,998809 27 96184 203 0,002106 0,997894 2.7 97294 118 0.001210 0.998790 28 95982 97176 203 0,002117 0,997883 28 119 0,001229 0,998771 29 95779 204 0,002128 0,997872 29 97057 123 0,001267 0,998733 30 95575 204 0,997861 30 96934 127 0,002139 0,001306 0,998694 31 95370 205 130 0,002149 0,997851 31 96807 0,001344 0,998656 32 95165 206 0,002160 0,997840 32 96677 136 0,001402 0,998598 94960 33 206 0,002171 0,997829 33 96541 143 0,001479 0,998521 34 94754 207 0.002182 0.997818 34 96399 150 0.001556 0.998444 0,997689 35 94547 219 96249 157 0,002311 35 0,001632 0,998368 234 36 94328 0,002484 0,997516 36 96092 167 0,001738 0,998262 37 94094 252 0,002679 0,997321 37 95925 177 0,001844 0,998156 38 93842 274 0,002916 0,997084 38 95748 187 0,001949 0,998051 39 93568 296 0,996835 95561 196 0,002055 0,997945 0,003165 39 0,997830 40 93272 320 0,996565 40 95365 207 0,002170 0,003435 92952 41 344 0,003705 0,996295 41 95158 219 0,002305 0,997695 42 92607 371 0,004008 0.995992 42 94938 233 0.002458 0.997542 92236 94705 43 401 0,995657 250 0.997359 0,004343 43 0,002641 44 433 0.995290 94455 91836 0,004710 44 268 0,002833 0.997167 45 91403 94187 469 0,005131 0,994869 45 288 0,003054 0,996946 90934 93900 46 512 0,005629 0,994371 46 310 0,003304 0,996696 47 93590 90422 566 0,006255 0,993745 47 334 0,003573 0,996427 48 89857 93255 624 0,006947 0,993053 48 361 0,003871 0,996129 49 89232 686 0,007693 0,992307 49 92894 391 0,004207 0,995793 50 88546 750 92503 421 0,995447 0,008471 0,991529 50 0,004553

0,990740

51

92082

455

0,004937

0,995063

51

87796

813

0,009260

		Для му	/жчин		Для женщин				
x	l_x	d_x	q_x	p_x	x	l_x	d_x	q_x	p_x
52	86983	877	0,010082	0,989918	52	91628	488	0,005322	0,994678
53	86106	943	0,010947	0,989053	53	91140	522	0,005726	0,994274
54	85163	1014	0,011910	0,988090	54	90618	558	0,006158	0,993842
55	84149	1094	0,013002	0,986998	55	90060	596	0,006620	0,993380
56	83055	1185	0,014267	0,985733	56	89464	640	0,007149	0,992851
57	81870	1287	0,015717	0,984283	57	88824	696	0,007841	0,992159
58	80583	1396	0,017318	0,982682	58	88128	761	0,008640	0,991360
59	79188	1509	0,019061	0,980939	59	87366	831	0,009515	0,990485
60	77678	1623	0,020890	0,979110	60	86535	904	0,010449	0,989551
61	76056	1735	0,022817	0,977183	61	85631	981	0,011460	0,988540
62	74320	1849	0,024885	0,975115	62	84650	1061	0,012528	0,987472
63	72471	1969	0,027171	0,972829	63	83589	1148	0,013732	0,986268
64	70502	2097	0,029739	0,970261	64	82441	1243	0,015081	0,984919
65	68405	2234	0,032665	0,967335	65	81198	1351	0,016633	0,983367
66	66170	2381	0,035983	0,964017	66	79847	1471	0,018427	0,981573
67	63789	2533	0,039714	0,960286		78376	1607	0,020501	0,979499
68	61256	2691	0,043924	0,956076	68	76769	1761	0,022933	0,977067
69	58566	2848	0,048636	0,951364		75009	1935	0,025792	0,974208
70	55717	3003	0,053894	0,946106	70	73074	2132	0,029176	0,970824
71	52714	3147	0,059699	0,940301	71	70942	2329	0,032833	0,967167
72	49567	3273	0,066041	0,933959		68613	2539	0,037008	0,962992
73	46294	3371	0,072812	0,927188		66073	2753	0,041672	0,958328
74	42923	3434	0,079993	0,920007	74	63320	2966	0,046847	0,953153
75	39490	3460	0,087627	0,912373	75	60354	3172	0,052555	0,947445
76	36029	3451	0,095792	0,904208	76	57182	3363	0,058817	0,941183
77	32578	3409	0,104632	0,895368		53819	3537	0,065714	0,934286
78	29169	3333	0,114248	0,885752	78	50282	3686	0,073299	0,926701
79	25837	3219	0,124578	0,875422	79	46596	3805	0,081654	0,918346
80	22618	3067	0,135612	0,864388		42792	3886	0,090805	0,909195
81	19551	2880	0,147289	0,852711	81	38906	3919	0,100739	0,899261
82	16671	2659	0,159478	0,840522	82	34987	3900	0,111471	0,888529
83	14012	2413	0,172195	0,827805	83	31087	3823	0,122979	0,877021
84	11600	2150	0,185365	0,814635	84	27264	3689	0,135292	0,864708
85	9449	1877	0,198658	0,801342		23575	3499	0,148438	0,851562
86	7572	1600	0,211354	0,788646		20076	3257	0,162227	0,837773
87	5972	1341	0,224617	0,775383	87	16819	2979	0,177111	0,822889
88	4630	1102	0,238051	0,761949		13840	2657	0,192012	0,807988
89	3528	888	0,251578	0,748422		11183	2312	0,206738	0,793262
90	2641	700	0,265154	0,734846		8871	1961	0,221093	0,778907
91	1940	541	0,278702	0,721298		6909	1640	0,237312	0,762688
92	1400	409	0,292155	0,707845		5270	1334	0,253070	0,746930
93	991	303	0,305446	0,694554		3936	1056	0,268175	0,731825
94	688	219	0,318505	0,681495		2881	814	0,282419	0,717581
95	469	155	0,331265	0,668735		2067	611	0,295592	0,704408
96	314	108	0,343667	0,656333		1456	448	0,307511	0,692489
97	206	73	0,355653	0,644347		1008	321	0,318023	0,681977
98	133	49	0,367141	0,632859		688	225	0,326975	0,673025
99	84	32	0,378072	0,621928		463	155	0,334245	0,665755
100	52	52	1,000000	0,000000		308	308	1,000000	0,000000
101		52	1,00000	3,300000	101		200	1,000000	0,00000
<u> </u>		ļ				<u> </u>			

Аннуитетная таблица смертности

	Для мужчин Для женщин							7	
x	l_x	d_x	$q_{\scriptscriptstyle X}$	p_x	х	l_x	d_x	q_x	p_x
0	100000	301	0,003012	0,996988	0	100000	471	0,004705	0,995295
1	99699	13	0,000134	0,999866	1	99530	19	0,000194	0,999806
2	99685	7	0,000070	0,999930		99510	12	0,000122	0,999878
3	99678	5	0,000053	0,999947	3	99498	10	0,000105	0,999895
4	99673	7	0,000075	0,999925	4	99488	10	0,000099	0,999901
5	99666	8	0,000085	0,999915	5	99478	9	0,000088	0,999912
6	99657	9	0,000091	0,999909	6	99469	8	0,000082	0,999918
7	99648	10	0,000097	0,999903		99461	8	0,000083	0,999917
8	99638	9	0,000091	0,999909	8	99453	9	0,000091	0,999909
9	99629	10	0,000101	0,999899		99444	10	0,000098	0,999902
10	99619	11	0,000113	0,999887	10	99434	10	0,000103	0,999897
11	99608	13	0,000131	0,999869	11	99424	10	0,000105	0,999895
12	99595	16	0,000159	0,999841	12	99413	11	0,000110	0,999890
13	99579	20	0,000196	0,999804	13	99402	12	0,000119	0,999881
14	99560	23	0,000236	0,999764	14	99390	13	0,000132	0,999868
15	99536	28	0,000277	0,999723	15	99377	15	0,000150	0,999850
16	99509	32	0,000319	0,999681	16	99362	17	0,000170	0,999830
17	99477	36	0,000363	0,999637	17	99345	19	0,000191	0,999809
18	99441	41	0,000411	0,999589	18	99326	21	0,000209	0,999791
19	99400	46	0,000458	0,999542	19	99306	22	0,000220	0,999780
20	99354	50	0,000502	0,999498	20	99284	22	0,000223	0,999777
21	99305	54	0,000540	0,999460		99262	22	0,000222	0,999778
22	99251	57	0,000571	0,999429	22	99240	22	0,000219	0,999781
23	99194	59	0,000596	0,999404	23	99218	22	0,000217	0,999783
24	99135	61	0,000617	0,999383	24	99196	22	0,000217	0,999783
25	99074	63	0,000637	0,999363	25	99175	22	0,000219	0,999781
26	99011	66	0,000662	0,999338		99153	22	0,000223	0,999777
27	98945	69	0,000701	0,999299		99131	23	0,000230	0,999770
28	98876	74	0,000745	0,999255	28	99108	24	0,000242	0,999758
29	98802	79	0,000804	0,999196		99084	26	0,000259	0,999741
30	98723	86	0,000875	0,999125	30	99059	28	0,000282	0,999718
31	98636	94	0,000956	0,999044	31	99031	31	0,000310	0,999690
32	98542	104	0,001053	0,998947	32	99000	34	0,000339	0,999661
33	98438	116	0,001176			98966		0,000371	0,999629
34	98323	131	0,001332		34	98930		0,000407	0,999593
35	98192	148	0,001503		35	98889	45	0,000451	0,999549
36 37	98044 97879	165 184	0,001686 0,001882	0,998314 0,998118	36 37	98845 98795	50 56	0,000504 0,000569	0,999496 0,999431
38	97695	205	0,001882	0,998118		98739	50 64	0,000569	0,999431
38 39	97693	203	0,002102	0,997898		98739	73	0,000646	0,999354
40	97469	254	0,002342	0,997638	40	98602	73 84	0,000739	0,999261
40	97201	282	0,002009	0,997391		98518	97	0,000831	0,999149
41	96725	314	0,002910	0,997090		98421	112	0,000983	0,998867
43	96411	349	0,003248		43	98310	128	0,001133	· ·
43	96061	388	0,003623	0,996377		98182	128 146		0,998518
45	95674	429	0,004033	0,995518		98037	165	0,001482	0,998322
46	95245	473	0,004462	0,995039		97872	184	0,001880	
47	94772	519	0,004901	0,993039		97688	203	0,001880	
48	94254	568	0,005474	0,993977	48	97485	203	0,002070	0,997737
49	93686	620	0,006615	0,993385	49	97265	238	0,002203	0,997553
50	93066	676	0,007259	0,993363	50	97027	257	0,002447	0,997355
51	92391	736	0,007239	0,992037	51	96770	278	0,002874	0,997126
52	91655	801	0,007303			96492	304	*	· ·
53	90854	871		*		96188		*	· ·
55	70034	0/1	0,00938/	0,990413	23	10100	333	0,003407	0,990333

		Для му	/жчин		Для женщин				
x	l_x	d_x	q_x	p_x	х	l_x	d_x	q_x	p_x
54	89983	947	0,010522	0,989478	54	95855	367	0,003830	0,996170
55	89036	1028	0,011547	0,988453	55	95488	404	0,004233	0,995767
56	88008	1115	0,012666	0,987334	56	95083	446	0,004686	0,995314
57	86894	1207	0,013885	0,986115	57	94638	492	0,005196	0,994804
58	85687	1303	0,015208	0,984792	58	94146		0,005773	0,994227
59	84384	1404	0,016640	0,983360	59	93603	602	0,006430	
60	82980	1509	0,018187	0,981813	60	93001	667	0,007169	0,992831
61	81471	1618	0,019859	0,980141	61	92334		0,007994	0,992006
62	79853	1730	0,021667	0,978333	62	91596		0,008901	0,991099
63	78123	1846	0,023624	0,976376	63	90781	898	0,009894	0,990106
64	76277	1964	0,025743	0,974257	64	89882	989	0,011005	0,988995
65	74313	2083	0,028032	0,971968	65	88893	1093	0,012298	0,987702
66	72230	2202	0,030484	0,969516	66	87800		0,013843	0,986157
67	70028	2319	0,033122	0,966878	67	86585	1355	0,015653	0,984347
68	67709	2432	0,035917	0,964083	68	85229	1504	0,017644	0,982356
69	65277	2537	0,038863	0,961137	69	83726		0,019679	0,980321
70	62740	2634	0,041977	0,958023	70	82078	1775	0,021622	0,978378
71	60107	2723	0,045300	0,954700	71	80303	1883	0,023444	0,976556
72	57384	2805	0,048889	0,951111	72	78421	1982	0,025271	0,974729
73	54578	2882	0,052814	0,947186	73	76439		0,027300	0,972700
74	51696	2954	0,057140	0,942860	74	74352	2215	0,029790	
75	48742	3018	0,061918	0,938082	75	72137	2381	0,033004	0,966996
76	45724	3072	0,067186	0,932814	76	69756		0,037107	0,962893
77	42652	3114	0,072999	0,927001	77	67168	2828	0,042104	0,957896
78	39538	3139	0,079394	0,920606	78	64340		0,047914	0,952086
79	36399	3144	0,086374	0,913626	79	61257	3338	0,054487	0,945513
80	33255	3122	0,093865	0,906135	80	57919		0,061855	0,938145
81	30134	3071	0,101917	0,898083	81	54337		0,070058	0,929942
82	27063	2995	0,110657	0,889343	82	50530		0,078973	0,921027
83	24068	2892	0,120144	0,879856	83	46540		0,088733	0,911267
84	21176	2756	0,130150	0,869850	84	42410		0,099477	0,900523
85	18420	2603	0,141289	0,858711	85	38191	4267	0,111716	0,888284
86	15818	2428	0,153485	0,846515		33925	4258	0,125500	
87	13390 11157	2233	0,166737	0,833263		29667 25486	4181	0,140929	0,859071
88	9137	2020	0,181072	0,818928		21455		0,158152	0,841848
89	7342	1795	0,196508	0,803492	89	17654		0,177191	0,822809
90 91	5777	1564 1333	0,213069	0,786931	90 91	17654		0,198237	0,801763
91	4444	1110	0,230781 0,249665	0,769219 0,750335	91	11020		0,221396 0,246760	
92	3334	899	0,249663	0,730333	92	8301	2719	0,246760	
93	2435	709	0,269737	0,730203	93 94	6023	1833	0,274396	,
95	1726	539	0,291003	0,708997	95	4190		0,304334	0,684835
96	1187	397	0,312410	0,665685	96	2870		0,315103	,
97	790	282	0,356861	0,643139	90 97	1907		0,333494	0,638817
98	508	193	0,380070	0,619930		1218		0,389770	
99	315	127	0,380070	0,596803	99	743		0,395537	0,604463
100	188	80	0,427460	0,572540		449		0,393337	0,591149
101	108	49	0,452464	0,547536		266		0,426260	· ·
102	59	28	0,477922	0,522078		152		0,446016	· ·
103	31	15	0,503380	0,496620		84		0,465771	0,534229
104	15	15	1,000000	0,000000		45	45	1,000000	· ·
105		15	1,00000	2,300000	105	.5		1,000000	3,000000
106					106				
107					107				
108					108				
109					109				
لـــــــا	l					II.			

Таблица инвалидности

Для мужчин Для женщин l^{d}_{x} d^{d}_{x} p^{d}_{x} l^{d}_{x} d^{d}_{x} q^{d}_{x} p^d_x q^{d}_{x} x x100000 0.001133 0.998867 100000 0,000675 0.999325 16 113 16 68 99932 17 99887 115 0.001155 0.998845 17 69 0.000690 0.999310 99771 120 0,001200 0,998800 18 99864 70 0,999295 18 0,000705 0,999265 19 99652 0.998792 19 99793 120 0.001208 73 0,000735 99531 99720 20 0,998762 20 75 0,000750 0,999250 123 0,001238 21 99408 127 0,001275 0,998725 21 99645 76 0,000765 0,999235 22 99281 129 0,001298 0,998702 22 99569 77 0,999227 0,000773 99492 23 99152 0.998657 23 78 133 0.001343 0,000788 0.999212 99019 99413 80 24 140 0,001410 0.998590 24 0,000803 0.999197 25 98880 146 0,998522 25 99334 80 0,999190 0,001478 0,000810 99253 26 98733 149 0,001508 0,998492 26 82 0,000825 0,999175 27 98585 155 0,998425 27 99171 83 0,999160 0,001575 0,000840 98429 99088 28 162 0,001650 0,998350 28 85 0,000863 0,999137 29 98267 0,998282 29 99002 89 0,000900 0,999100 169 0,001718 30 98098 30 98913 175 0,998214 96 0,000975 0,999025 0,001786 97923 98817 31 180 0,001838 0,998162 31 101 0,001020 0,998980 32 97743 188 0.001921 0.998079 32 98716 104 0.001050 0.998950 33 97555 0,001988 0,998012 33 98612 107 0,998920 194 0,001080 0.997914 98506 34 97361 203 0,002086 34 111 0.001125 0.998875 35 97158 212 0,997817 35 98395 0,001200 0,998800 0,002183 118 36 96946 218 0,002251 0,997749 36 98277 125 0,001275 0,998725 37 96728 226 0,002333 0,997667 37 98152 0,998665 131 0,001335 38 96502 240 0,002491 0,997509 38 98021 136 0,001388 0,998612 39 96262 39 97885 251 0,002611 0.997389 143 0,001463 0,998537 97741 40 96010 0,997224 40 147 0,998500 267 0,002776 0,001500 41 95744 280 0,002926 0,997074 41 97595 161 0,001650 0,998350 42 95464 297 0,996886 42 97434 0,001763 0,998237 0,003114 172 95166 97262 43 321 0,003377 0,996623 43 195 0,002003 0,997997 44 94845 359 0,003790 0,996210 44 97067 211 0,002176 0,997824 45 94486 397 0,004203 0,995797 45 96856 233 0,002408 0,997592 46 94088 451 0.004789 0.995211 46 96623 257 0.002656 0.997344 47 93638 495 47 96366 278 0,997119 0,005285 0,994715 0,002881 96088 48 93143 532 0,005713 0,994287 48 304 0.003167 0,996833 49 92611 0.993919 49 95784 563 0.006081 328 0.003429 0.996571 92048 95455 0,003865 50 598 0,993505 50 369 0,006495 0,996135 51 91450 639 0,006983 0,993017 51 95087 414 0,004353 0,995647 52 90811 672 0,007404 0,992596 52 94673 481 0,005082 0,994918 53 90139 53 94192 713 0,007915 0,992085 530 0,005630 0,994370 89425 93661 54 772 0.008630 0.991370 54 591 0,006307 0.993693 55 93070 88654 832 0,009390 0,990610 55 664 0,007133 0,992867 56 87821 884 0,010067 0,989933 56 92407 743 0,008043 0,991957 57 86937 952 0,989045 57 91663 0,008961 0,991039 0,010955 821 58 85985 1027 0,011949 0,988051 58 90842 913 0,010052 0,989948 84957 59 89929 59 1098 0,012928 0.987072 1000 0.011121 0,988879 60 83859 60 88929 1173 0,013990 0,986010 1051 0,011813 0,988187 82686 1240 0,014993 0,985007 61 87878 1092 0,012431 0,987569 61 62 81446 1301 0,015973 0,984027 62 86786 1133 0,013056 0,986944 80145 85653 63 1320 0,016470 0,983530 63 1140 0,013305 0,986695 78825 84513 64 1328 0,016847 0,983153 64 1150 0,013606 0,986394 77497 65 1335 0,017225 0,982775 65 83363 1153 0,013832 0,986168 66 76162 1335 0,017526 0,982474 66 82210 1156 0,014058 0,985942 67 74827 1334 0,017828 0,982172 67 81054 1146 0,014133 0,985867 68 73493 68 79909 1135 1327 0,018062 0,981938 0,014209 0,985791 69 72166 1317 0,018251 0,981749 69 78773 1137 0,014435 0,985565 70849 70 1127 0,985490 70 1306 0,018439 0,981561 77636 0,014510

Таблица СОЗ

Для мужчин Для						кениции			
х	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x	х	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x
1	100000	254	0,002538	0,997462	1	100 000	244	0,002443	0,997557
2	99746	253	0,002538	0,997462	2	99 756	244	0,002443	0,997557
3	99493	253	0,002538	0,997462	3	99 512	243	0,002443	0,997557
4	99240	241	0,002433	0,997567	4	99 269	229	0,002308	0,997692
5	98999	229	0,002312	0,997688	5	99 040	215	0,002172	0,997828
6	98770	217	0,002195	0,997805	6	98 825	203	0,002055	0,997945
7	98553	207	0,002099	0,997901	7	98 622	194	0,001967	0,998033
8	98346	200	0,002033	0,997967	8	98 428	189	0,001918	0,998082
9	98146	196	0,002001	0,997999	9	98 239	187	0,001908	0,998092
10	97950	196	0,002000	0,998000	10	98 051	189	0,001931	0,998069
11	97754	198	0,002028	0,997972	11	97 862	194	0,001982	0,998018
12	97556	203	0,002079	0,997921	12	97 668	200	0,002052	0,997948
13	97353	210	0,002153	0,997847	13	97 468	208	0,002136	0,997864
14	97143	218	0,002247	0,997753	14	97 260	217	0,002229	0,997771
15	96925	230	0,002370	0,997630	15	97 043	227	0,002341	0,997659
16	96696	244	0,002519	0,997481	16	96 816	239	0,002466	0,997534
17	96452	259	0,002687	0,997313	17	96 577	251	0,002597	0,997403
18	96193	56	0,000584	0,999416	18	96 326	53	0,000548	0,999452
19	96137	35	0,000368	0,999632	19	96 273	36	0,000375	0,999625
20	96101	39	0,000402	0,999598	20	96 237	40	0,000411	0,999589
21	96063	42	0,000434	0,999566	21	96 198	43	0,000443	0,999557
22	96021	44	0,000463	0,999537	22	96 155	45	0,000470	0,999530
23	95977	47	0,000494	0,999506	23	96 110	48	0,000496	0,999504
24	95929	51	0,000529	0,999471	24	96 062	50 53	0,000524	0,999476
25	95878 95824	54 58	0,000568	0,999432 0,999391	25 26	96 012 95 959	53 57	0,000555	0,999445
26 27	95824 95765	58 62	0,000609 0,000652	0,999391	26	95 959 95 901	62	0,000595 0,000644	0,999405 0,999356
28	95703	67	0,000632	0,999348	28	95 901	68	0,000644	0,999336
29	95703	71	0,000745	0,999304	29	95 772	75	0,000707	0,999293
30	95565	77	0,000743	0,999195	30	95 697	7 <i>5</i> 85	0,000788	0,999214
31	95488	83	0,000803	0,999128	31	95 612	95	0,000895	0,999005
32	95405	90	0,000945	0,999055	32	95 517	106	0,000333	0,998887
33	95315	99	0,000043	0,998966	33	95 411	119	0,001115	0,998755
34	95216	109	0,001031	0,998858		95 292	132	0,001390	0,998610
35	95108	121	0,001272	0,998728	35	95 159	147	0,001549	0,998451
36	94987	136	0,001427	0,998573	36	95 012	164	0,001722	0,998278
37	94851	153	0,001614	0,998386	37	94 848	182	0,001920	0,998080
38	94698	173	0,001829	0,998171	38	94 666	202	0,002137	0,997863
39	94525	196	0,002069	0,997931	39	94 464	223	0,002365	0,997635
40	94329	221	0,002341	0,997659	40	94 241	246	0,002609	0,997391
41	94108	249	0,002647	0,997353	41	93 995	270	0,002870	0,997130
42	93859	281	0,002991	0,997009	42	93 725	295	0,003149	0,996851
43	93578	316	0,003377	0,996623	43	93 430	322	0,003447	0,996553
44	93262	356	0,003813	0,996187	44	93 108	351	0,003768	0,996232
45	92907	400	0,004302	0,995698	45	92 757	382	0,004113	0,995887
46	92507	449	0,004852	0,995148	46	92 375	414	0,004484	0,995516
47	92058	504	0,005470	0,994530	47	91 961	449	0,004882	0,995118
48	91555	564	0,006160	0,993840	48	91 512	486	0,005311	0,994689
49	90991	631	0,006930	0,993070	49	91 026	525	0,005772	0,994228
50	90360	703	0,007784	0,992216	50	90 501	567	0,006269	0,993731
51	89657	782	0,008727	0,991273	51	89 933	612	0,006804	0,993196
52	88874	867	0,009760	0,990240	52	89 321	659	0,007380	0,992620
53	88007	958	0,010885	0,989115	53	88 662	709	0,007996	0,992004
54	87049	1054	0,012103	0,987897	54	87 953	761	0,008654	0,991346

Для мужчин Для женщин l^{sa}_{x} d^{sa}_{x} l^{sa}_{x} d^{sa}_{x} i_x х \boldsymbol{x} i_{x} p_x p_x 55 85995 0,013415 0,986585 87 192 0,009354 0,990646 1154 55 816 872 0,989905 56 84842 1258 0,014826 0,985174 56 86 377 0,010095 57 85 505 931 0,989117 83584 1366 0,016343 0,983657 57 0,010883 58 82218 1477 0,017965 0,982035 58 84 574 991 0,011712 0,988288 59 80741 1590 59 83 583 1 051 0,019689 0,980311 0,012575 0,987425 60 79151 1704 0,021525 0,978475 60 82 532 1 113 0,013483 0,986517 61 77447 1821 0,023512 0,976488 61 81 420 1 180 0,014492 0,985508 80 240 62 75626 1941 0,025665 0,974335 1 254 0,015624 0,984376 62 63 73686 2061 0,027965 0,972035 63 78 986 1 331 0,016847 0,983153 64 71625 2179 1 412 0,030421 0,969579 64 77 655 0,018179 0,981821 65 69446 2295 0,033041 0,966959 65 76 244 1 497 0,019639 0,980361 66 67151 2406 0,035834 0,964166 66 74 746 1 589 0,021254 0,978746 67 64745 2513 0,038814 0,961186 73 158 1 687 0,023061 0,976939 67 68 62232 2614 0,041998 0,958002 68 71 471 1 794 0,025106 0,974894 69 1 913 0,972543 59618 2707 0,045412 0,954588 69 69 676 0,027457 70 56911 2794 0,049089 0,950911 70 67 763 2 046 0,030200 0,969800

Таблица СОЗ для продукта «Солнышко» по договорам, заключенным с 01.04.2022

		Для му	/жчин				Для :	женщин	
x	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x	x	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle \mathcal{X}}$	p_x
55	80 420	1 554	0,019318	0,980682	55	82 044	1 105	0,013470	0,986530
56	78 866	1 684	0,021349	0,978651	56	80 939	1 177	0,014537	0,985463
57	77 182	1 816	0,023534	0,976466	57	79 762	1 250	0,015672	0,984328
58	75 366	1 950	0,025869	0,974131	58	78 512	1 324	0,016865	0,983135
59	73 416	2 082	0,028352	0,971648	59	77 188	1 398	0,018109	0,981891
60	71 335	2 211	0,030997	0,969003	60	75 790	1 472	0,019416	0,980584
61	69 124	2 340	0,033858	0,966142	61	74 319	1 551	0,020869	0,979131
62	66 783	2 468	0,036957	0,963043	62	72 768	1 637	0,022498	0,977502
63	64 315	2 590	0,040269	0,959731	63	71 131	1 726	0,024260	0,975740
64	61 725	2 704	0,043806	0,956194	64	69 405	1 817	0,026178	0,973822
65	59 021	2 808	0,047579	0,952421	65	67 588	1 911	0,028280	0,971720
66	56 213	2 901	0,051602	0,948398	66	65 677	2 010	0,030606	0,969394
67	53 312	2 980	0,055892	0,944108	67	63 667	2 114	0,033207	0,966793
68	50 333	3 044	0,060477	0,939523	68	61 552	2 225	0,036153	0,963847
69	47 289	3 092	0,065393	0,934607	69	59 327	2 346	0,039538	0,960462
70	44 196	3 124	0,070689	0,929311	70	56 981	2 478	0,043488	0,956512

Таблица СОЗ для продукта Звездочка _Н Для женщин

Для мужчин

						1			
х	l^{sa}_{x}	d^{sa}_{x}	i_{x}	p_x	х	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x
1	100 000	368	0,003680	0,996320	1	100 000	354	0,003543	0,996457
2	99 632	367	0,003680	0,996320	2	99 646	353	0,003543	0,996457
3	99 265	365	0,003680	0,996320	3	99 293	352	0,003543	0,996457
4	98 900	349	0,003528	0,996472	4	98 941	331	0,003346	0,996654
5	98 551	330	0,003352	0,996648	5	98 610	311	0,003150	0,996850
6	98 221	313	0,003183	0,996817	6	98 299	293	0,002979	0,997021
7	97 908	298	0,003043	0,996957	7	98 006	280	0,002852	0,997148
8	97 610	288	0,002948	0,997052	8	97 727	272	0,002781	0,997219
9	97 322	282	0,002902	0,997098	9	97 455	270	0,002766	0,997234
10	97 040	281	0,002901	0,997099	10	97 186	272	0,002800	0,997200
11	96 758	284	0,002940	0,997060	11	96 913	278	0,002873	0,997127
12	96 474	291	0,003015	0,996985	12	96 635	288	0,002975	0,997025
13	96 183	300	0,003122	0,996878	13	96 348	298	0,003097	0,996903
14	95 883	312	0,003257	0,996743	14	96 049	310	0,003231	0,996769
15	95 570	328	0,003437	0,996563	15	95 739	325	0,003395	0,996605
16	95 242	348	0,003652	0,996348	16	95 414	341	0,003575	0,996425
17	94 894	370	0,003896	0,996104	17	95 073	358	0,003766	0,996234
18	94 524	80	0,000846	0,999154	18	94 715	75	0,000794	0,999206
19	94 444	50	0,000533	0,999467	19	94 639	51	0,000543	0,999457
20	94 394	55	0,000583	0,999417	20	94 588	56	0,000595	0,999405
21	94 339	59	0,000629	0,999371	21	94 532	61	0,000642	0,999358
22	94 280	63	0,000671	0,999329	22	94 471	64	0,000682	0,999318
23	94 216	68	0,000717	0,999283	23	94 406	68	0,000720	0,999280
24	94 149	72	0,000768	0,999232	24	94 339	72	0,000759	0,999241
25	94 077	77	0,000823	0,999177	25	94 267	76	0,000805	0,999195

Таблица ЖОЗ

Для ж				
х	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x
18	100 000	20	0,0001963	0,999804
19	99 980	20	0,0001963	0,999804
20	99 961	35	0,0003507	0,999649
21	99 926	35	0,0003507	0,999649
22	99 891	35	0,0003507	0,999649
23	99 856	35	0,0003507	0,999649
24	99 821	45	0,0004518	0,999548
25	99 776	72	0,0007214	0,999279
26	99 704	89	0,0008946	0,999105
27	99 614	108	0,0010888	0,998911
28	99 506	130	0,0013043	0,998696
29	99 376	153	0,0015415	0,998459
30	99 223	110	0,0013413	0,998887
31	99 112	127	0,0011133	0,998714
32	98 985	146	0,0012803	0,998528
33	98 839	165	0,0014721	0,998329
34	98 674	186	0,0010714	0,998115
35	98 488	155	0,0018848	0,998113
		173	·	
36	98 333		0,0017542	0,998246
37	98 160	191	0,0019441	0,998056
38	97 970	210	0,0021448	0,997855
39	97 759	230	0,0023571	0,997643
40	97 529	222	0,0022727	0,997727
41	97 307	241	0,0024791	0,997521
42	97 066	262	0,0026943	0,997306
43	96 805	283	0,0029183	0,997082
44	96 522	304	0,0031504	0,99685
45	96 218	313	0,0032482	0,996752
46	95 906	334	0,0034815	0,996519
47	95 572	355	0,0037178	0,996282
48	95 216	377	0,0039567	0,996043
49	94 840	398	0,004198	0,995802
50	94 441	422	0,0044632	0,995537
51	94 020	443	0,0047083	0,995292
52	93 577	464	0,0049544	0,995046
53	93 114	484	0,0052025	0,994797
54	92 629	505	0,0054539	0,994546
55	92 124	516	0,0055979	0,994402
56	91 608	536	0,0058517	0,994148
57	91 072	556	0,0061087	0,993891
58	90 516	576	0,0063682	0,993632
59	89 940	596	0,0066291	0,993371
60	89 343	615	0,006886	0,993114
61	88 728	634	0,0071446	0,992855
62	88 094	652	0,0073995	0,992601
63	87 442	669	0,0076497	0,99235
64	86 773	685	0,0078947	0,992105
65	86 088	698	0,0081088	0,991891

Таблица подтверждения диагноза онкологического заболевания

для ж	енщин			
X	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x
18	100 000	20	0,0001963	0,999804
19	99 980	20	0,0001963	0,999804
20	99 961	35	0,0003507	0,999649
21	99 926	35	0,0003507	0,999649
22	99 891	35	0,0003507	0,999649
23	99 856	35	0,0003507	0,999649
24	99 821	45	0,0004518	0,999548
25	99 776	72	0,0007214	0,999279
26	99 704	89	0,0008946	0,999105
27	99 614	108	0,0010888	0,998911
28	99 506	130	0,0013043	0,998696
29	99 376	153	0,0015415	0,998459
30	99 223	110	0,0011135	0,998887
31	99 112	127	0,0012863	0,998714
32	98 985	146	0,0014721	0,998528
33	98 839	165	0,0016714	0,998329
34	98 674	186	0,0018848	0,998115
35	98 488	155	0,0015747	0,998425
36	98 333	173	0,0017542	0,998246
37	98 160	191	0,0019441	0,998056
38	97 970	210	0,0021448	0,997855
39	97 759	230	0,0023571	0,997643
40	97 529	222	0,0022727	0,997727
41	97 307	241	0,0024791	0,997521
42	97 066	262	0,0026943	0,997306
43	96 805	283	0,0029183	0,997082
44	96 522	304	0,0031504	0,99685
45	96 218	313	0,0031301	0,996752
46	95 906	334	0,0034815	0,996519
47	95 572	355	0,0037178	0,996282
48	95 216	377	0,0039567	0,996043
49	94 840	398	0,004198	0,995802
50	94 441	422	0,0044632	0,995537
51	94 020	443	0,0047083	0,995292
52	93 577	464	0,0049544	0,995046
53	93 114	484	0,0052025	0,994797
54	92 629	505	0,0054539	0,994546
55	92 124	516	0,0055979	0,994402
56	91 608	536	0,0058517	0,994148
57	91 072	556	0,0061087	0,993891
58	90 516	576	0,0063682	0,993632
59	89 940	596	0,0066291	0,993371
60	89 343	615	0,006886	0,993114
61	88 728	634	0,000330	0,992855
62	88 094	652	0,0071440	0,992601
63	87 442	669	0,0075993	0,99235
64	86 773	685	0,0078947	0,992105
65	86 088	698	0,0078947	0,991891
UJ	00 000	070	0,0001000	0,331031

Таблица мастэктомии

Для женщин									
х	l_x^{sa}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x					
18	100000	11	0,000114	0,999886					
19	99989	11	0,000114	0,999886					
20	99977	11	0,000114	0,999886					
21	99966	11	0,000114	0,999886					
22	99954	11	0,000114	0,999886					
23	99943	11	0,000114	0,999886					
24	99931	15	0,000147	0,999853					
25	99917	19	0,000187	0,999813					
26	99898	23	0,000231	0,999769					
27	99875	28	0,000282	0,999718					
28	99847	34	0,000337	0,999663					
29	99813	40	0,000399	0,999601					
30	99773	46	0,000466	0,999534					
31	99727	54	0,000538	0,999462					
32	99673	61	0,000616	0,999384					
33	99612	70	0,000699	0,999301					
34	99542	78	0,000788	0,999212					
35	99464	88	0,000883	0,999117					
36	99376	98	0,000984	0,999016					
37	99278	108	0,001091	0,998909					
38	99170	119	0,001203	0,998797					
39	99051	131	0,001322	0,998678					
40	98920	143	0,001448	0,998552					
41	98776	156	0,001579	0,998421					
42	98620	169	0,001716	0,998284					
43	98451	183	0,001859	0,998141					
44	98268	197	0,002007	0,997993					
45	98071	212	0,002159	0,997841					
46	97859	226	0,002314	0,997686					
47	97633	241	0,002471	0,997529					
48	97391	256	0,002630	0,997370					
49	97135	271	0,002790	0,997210					
50	96864	286	0,002952	0,997048					
51	96578	301	0,003114	0,996886					
52	96278	315	0,003277	0,996723					
53	95962	330	0,003441	0,996559					
54	95632	345	0,003607	0,996393					
55	95287	360	0,003776	0,996224					
56	94927	375	0,003947	0,996053					
57	94553	390	0,004120	0,995880					
58	94163	404	0,004295	0,995705					
59	93759	419	0,004471	0,995529					
60	93339	434	0,004647	0,995353					
61	92906	448	0,004822	0,995178					
62	92458	462	0,004994	0,995006					
63	91996	475	0,005163	0,994837					
64	91521	488	0,005328	0,994672					
65	91033	500	0,005490	0,994510					

Таблица вероятности проведения хирургической операции Застрахованного в результате несчастного случая

Таблица вероятности проведения хирургической операции Застрахованного в результате несчастного случая для продуктов Звездочка, Солнышко

Для женщин Для мужчин l^{sa}_{x} l^{sa}_{x} d^{sa}_{x} d^{sa}_{x} \boldsymbol{x} p_x p_x 100000 140 0,998600 100000 140 0,0014 0,9986 0 0,0014 0 99860 140 0,0014 0,998600 99860 140 0,0014 0,9986 2 99720 140 0,0014 0,998600 2 99720 140 0,0014 0,9986 3 139 0,0014 0,998600 3 99581 139 0,0014 0,9986 99581 4 99441 139 0,0014 0,998600 99441 139 0,0014 0,9986 99302 5 139 0,0014 0,998600 5 99302 139 0,0014 0,9986 139 6 99163 139 0,0014 0,998600 6 99163 0,0014 0,9986 7 99024 139 0,0014 0,998600 7 99024 139 0,0014 0,9986 8 98885 138 0,0014 0,998600 8 98885 138 0,0014 0,9986 9 98747 138 0,0014 0,998600 98747 138 0,0014 0,9986 10 98609 138 0,0014 0,998600 10 98609 138 0,0014 0,9986 98471 138 11 98471 138 0,0014 0,998600 11 0,0014 0,9986 12 98333 138 0,0014 0,998600 12 98333 138 0,0014 0,9986 13 98195 137 0,0014 0,998600 98195 137 0,0014 0,9986 13 137 0,0014 0,998600 98058 0,0014 0,9986 14 98058 14 137 15 97920 137 0,0014 0,998600 15 97920 137 0,0014 0,9986 16 97783 196 0,002005 0,997995 16 97783 167 0,001705 0,998295 17 97587 209 0,00214 0,99786 17 97617 175 0,001793 0,998207 0,998156 18 97378 219 0,002252 0,997748 18 97442 180 0,001844 19 97159 227 0.002339 0,997661 97262 0,99814 19 181 0.00186 20 233 97081 179 96932 0,002402 0,997598 0,001848 0,998152 20 21 236 96699 0,002439 0,997561 21 96902 176 0,001818 0,998182 22 236 0,00245 0,99755 22 96725 0,001778 0,998222 96463 172 23 235 0,002437 0,997563 23 96227 96553 167 0,001734 0,998266 24 95992 231 0,002406 0,997594 24 96386 163 0,001689 0,998311 25 95761 226 0,002362 0,997638 25 96223 158 0,001646 0,998354 26 221 95535 0,002316 0,997684 26 96065 155 0,00161 0,99839 27 95314 216 0,002271 0,997729 27 95910 152 0,001583 0,998417 28 95098 212 0,002233 0,997767 28 95758 150 0,001566 0,998434 29 94885 209 0,002201 0,997799 95608 149 0,00156 29 0,99844 30 206 30 95459 149 94676 0,002179 0,997821 0,001563 0,998437 31 94470 205 0,002166 0,997834 31 95310 150 0,001577 0,998423 32 94265 204 0,002164 0,997836 32 95160 152 0,0016 0,9984 33 94061 204 0,002173 0,997827 95008 0,001633 0,998367 33 155 34 206 0.002194 0,997806 94852 0,001676 0,998324 93857 34 159 35 208 0,002224 93651 0,997776 35 94693 164 0,001727 0,998273 36 93443 211 0,002262 0,997738 36 94530 168 0,001782 0,998218 37 93231 215 0,002307 0,997693 37 94361 174 0,001839 0,998161 38 93016 220 0,002361 0,997639 38 94188 179 0,001901 0,998099 39 92797 225 94009 0,001968 0,002425 0,997575 39 185 0,998032 40 92572 231 0,002498 0,997502 93824 191 0,002041 40 0,997959 41 92340 238 0,002578 0,997422 93632 198 0,002117 0,997883 41 42 92102 246 0,002666 0,997334 42 93434 205 0,002197 0,997803 254 43 91857 0,002767 0,997233 43 93229 213 0,002285 0,997715 91603 0,002884 0,997116 93016 222 0,002382 0,997618 44 264 44 45 276 0,996981 92794 231 91339 0,003019 45 0,002488 0,997512 46 91063 289 0,00317 0,99683 46 92563 240 0,002598 0,997402 47 90774 303 0,003341 0,996659 47 92323 250 0,002713 0,997287 48 90471 320 0,003538 0,996462 48 92072 261 0,002835 0,997165 49 90151 340 0,003766 0,996234 49 91811 272 0,002967 0,997033 50 0,996891 89811 362 0,004027 0,995973 91539 285 0,003109 50

х	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x	х	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x
51	89450	385	0,004308	0,995692	51	91254	297	0,003253	0,996747
52	89064	410	0,004609	0,995391	52	90958	309	0,0034	0,9966
53	88654	438	0,004938	0,995062	53	90648	322	0,003553	0,996447
54	88216	468	0,005301	0,994699	54	90326	335	0,003714	0,996286
55	87748	500	0,005694	0,994306	55	89991	350	0,003885	0,996115
56	87249	532	0,006094	0,993906	56	89641	364	0,004056	0,995944
57	86717	564	0,006499	0,993501	57	89278	377	0,004228	0,995772
58	86153	596	0,006916	0,993084	58	88900	392	0,004406	0,995594
59	85558	629	0,007352	0,992648	59	88508	407	0,004594	0,995406
60	84929	663	0,007805	0,992195	60	88102	422	0,004793	0,995207
61	84266	695	0,008248	0,991752	61	87680	438	0,004995	0,995005
62	83571	725	0,008681	0,991319	62	87242	454	0,005202	0,994798
63	82845	755	0,009111	0,990889	63	86788	470	0,005421	0,994579
64	82090	784	0,009547	0,990453	64	86317	488	0,005657	0,994343
65	81307	812	0,009989	0,990011	65	85829	507	0,00591	0,99409

Таблица вероятности проведения хирургической операции Застрахованного в результате несчастного случая для продукта Гардиа

Таблица вероятности проведения хирургической операции в результате болезни (минимальная)

Таблица вероятности проведения хирургической операции в результате болезни (средняя)

Таблица вероятности проведения хирургической операции в результате болезни (максимальная)

Для мужчин

х	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x	х	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	p_x
0	100000	210	0,0021	0,9979	0	100000	210	0,0021	0,9979
1	99790	210	0,0021	0,9979	1	99790	210	0,0021	0,9979
2	99580	209	0,0021	0,9979	2	99580	209	0,0021	0,9979
3	99371	209	0,0021	0,9979	3	99371	209	0,0021	0,9979
4	99163	208	0,0021	0,9979		99163	208	0,0021	0,9979
5	98954	208	0,0021	0,9979	5	98954	208	0,0021	0,9979
6	98747	207	0,0021	0,9979	6	98747	207	0,0021	0,9979
7	98539	207	0,0021	0,9979	7	98539	207	0,0021	0,9979
8	98332	206	0,0021	0,9979	8	98332	206	0,0021	0,9979
9	98126	206	0,0021	0,9979	9	98126	206	0,0021	0,9979
10	97920	206	0,0021	0,9979	10	97920	206	0,0021	0,9979
11	97714	205	0,0021	0,9979	11	97714	205	0,0021	0,9979
12	97509	205	0,0021	0,9979	12	97509	205	0,0021	0,9979
13	97304	204	0,0021	0,9979	13	97304	204	0,0021	0,9979
14	97100	204	0,0021	0,9979	14	97100	204	0,0021	0,9979
15	96896	203	0,0021	0,9979	15	96896	203	0,0021	0,9979
16	96692	258	0,002668	0,997332	16	96692	255	0,002634	0,997366
17	96434	281	0,002911	0,997089	17	96438	279	0,002897	0,997103
18	96154	301	0,003135	0,996865	18	96158	302	0,003141	0,996859
19	95852	320	0,00334	0,99666	19	95856	323	0,003373	0,996627
20	95532	337	0,003526	0,996474	20	95533	344	0,003596	0,996404
21	95195	351	0,003683	0,996317	21	95189	363	0,003812	0,996188
22	94845	362	0,003814	0,996186	22	94827	382	0,004029	0,995971
23	94483	371	0,003926	0,996074	23	94445	402	0,004259	0,995741
24	94112	379	0,004026	0,995974	24	94042	425	0,004514	0,995486
25	93733	387	0,004126	0,995874	25	93618	449	0,004799	0,995201
26	93346	395	0,00423	0,99577	26	93169	476	0,005104	0,994896
27	92951	404	0,004349	0,995651	27	92693	504	0,005434	0,994566
28	92547	416	0,004491	0,995509	28	92189	535	0,005803	0,994197
29	92132	430	0,004664	0,995336	29	91654	570	0,006221	0,993779
30	91702	447	0,004871	0,995129	30	91084	610	0,006692	0,993308
31	91255	466	0,005102	0,994898	31	90475	651	0,007194	0,992806
32	90790	487	0,005361	0,994639	32	89824	695	0,007733	0,992267
33	90303	511	0,005655	0,994345	33	89129	742	0,008326	
34	89792	538		0,994011		88387	794	0,008988	·
35	89255	568	0,006362	0,993638		87593	851	0,009717	0,990283
36	88687	599	0,006753	0,993247	36	86741	909	0,010479	0,989521
37	88088	631	0,007166			85832	968	0,011273	0,988727
38	87457	666	0,007612			84865	1028	0,012112	0,987888
39	86791	704				83837	1090	0,013002	0,986998
40	86087	745 780	0,008656	0,991344		82747	1152	0,013925	0,986075
41	85342	789	0,009242	0,990758	41	81595	1209	0,014812	0,985188
42	84553	835	0,009876	0,990124 0,989415	42 43	80386	1257 1299	0,015642	0,984358
43	83718	886	0,010585	· · · · · · · · · · · · · · · · · · ·		79129		0,016419	0,983581
44	82832	944	0,011397	0,988603	44 45	77830 76405	1335	0,017153	0,982847
45 46	81888	1009	0,012319	0,987681	45 46	76495 75130	1364	0,017836	· ·
46 47	80879	1077	0,013318	0,986682	46 47	75130 73746	1385 1396	0,01843 0,018929	0,98157 0,981071
47	79802	1150 1230	· ·	0,985587		73746 72350	1400		
48 49	78652			0,984356	48 49	72350 70050	1399	0,01935	0,98065
50	77422 76102	1320 1418	0,017048 0,018628	0,982952	50	70950 69551	1399	0,019716 0,020048	· ·
50			· ·	0,981372			1394		· ·
	74684 73167	1517	· ·			68156 66760		0,020356	
52	73167	1619	0,022129	0,977871	52	66769	1380	0,020663	0,979337

х	l^{sa}_{x}	d^{sa}_{x}	$i_{\scriptscriptstyle X}$	$p_{\scriptscriptstyle X}$	х	l^{sa}_{x}	d^{sa}_{x}	i_x	p_x
53	71547	1725	0,024108	0,975892	53	65389	1373	0,020996	0,979004
54	69823	1836	0,026295	0,973705	54	64016	1369	0,021384	0,978616
55	67987	1949	0,028669	0,971331	55	62648	1368	0,021843	0,978157
56	66038	2054	0,031098	0,968902	56	61279	1371	0,02237	0,97763
57	63984	2148	0,03357	0,96643	57	59908	1377	0,022983	0,977017
58	61836	2234	0,036134	0,963866	58	58531	1388	0,02371	0,97629
59	59602	2315	0,038838	0,961162	59	57144	1404	0,024569	0,975431
60	57287	2387	0,041665	0,958335	60	55740	1424	0,025556	0,974444
61	54900	2441	0,044464	0,955536	61	54315	1446	0,026617	0,973383
62	52459	2477	0,047226	0,952774	62	52870	1467	0,027752	0,972248
63	49981	2499	0,050006	0,949994	63	51402	1490	0,028982	0,971018
64	47482	2510	0,052862	0,947138	64	49913	1514	0,030325	0,969675
65	44972	2509	0,055781	0,944219	65	48399	1537	0,031766	0,968234
66	42463	2499	0,058861	0,941139	66	46862	1559	0,033275	0,966725
67	39964	2482	0,062111	0,937889	67	45303	1579	0,034857	0,965143
68	37482	2457	0,065541	0,934459	68	43724	1596	0,036513	0,963487
69	35025	2422	0,069160	0,930840	69	42128	1611	0,038248	0,961752
70	32603	2379	0,072979	0,927021	70	40517	1623	0,040066	0,959934